KI und Machine Learning ausprobieren

 

Ich habe ja bei LinkedIn Learning (LiL) diverse Training zu KI, aber auch  Big Data, Maschinenlernen und Datenanalyse veröffentlicht. Aktuell bin ich auf einen extrem spannenden Ansatz von Google gestoßen, wie man Künstliche Intelligenz und Maschinenlernen direkt im Browser mehr oder weniger spielerisch ausprobieren kann. „KI und Machine Learning ausprobieren“ weiterlesen

KI-Update bei Python für die Datenanalyse 1: Grundlagen

Es ist schon eine kleine Weile her, seit ich den US-Kurs zu Big Data, Maschinenlernen und Datenanalyse meiner amerikanischen Kollegin Lillian Pierson ins Deutsche adaptiert habe und er unter Python für die Datenanalyse 1: Grundlagen bei LinkedIn Learing veröffentlicht wurde. Er ist immer noch einer meiner bestgehenden LiL-Kurse, aber die ganzen Entwicklungen rund um künstliche Intelligenz haben mich zu einem kleinen KI-Update veranlasst. Obwohl es auch zu der Zeit der ursprünglichen Aufnahme natürlich schon sehr leistungsfähige und fortgeschrittene KI gab, war es da ein Randthema für Nerds. ChatCPT & Co haben das geändert und KI ins tägliche Leben der Masse katapultiert. Deshalb machte es m.E. viel Sinn, einmal die Grundlagenbedeutung von Big Data, Maschinenlernen und Datenanalyse für KI aufzunehmen also auch den Tipp, wie umgekehrt KI bei diesen Grundlagenthemen selbst helfen kann.

Für Eltern erklärt

Wenn mir nicht der Rücken ständig zwicken würde, müsste ich wohl noch ziemlich jung sein. Denn mir ist durchaus geläufig, was ein Data Scientist macht bzw. dieses Modewort bezeichnet.

Anscheinend muss man das Leuten, die in dem Alter sind, dass sie (theoretisch) Kinder oder gar Enkel haben können, erst einmal erklären. Fällt in Spiegel Online unter die Kategorie „Berufe für Eltern erklärt“.

Na sowas – und warum erkläre ich mit meinem Alter in dem neusten Training, das ich die letzten Tage bei LinkedIn Learning in Graz aufgenommen habe, den Jungen (aber natürlich nicht nur denen) erst einmal, wie ein Data Science bzw. Data Analyst das machen kann, was er dann wieder den Eltern und Großeltern erklären soll?

Das war es wieder einmal

Die Aufnahmen bei LinkedIn Learning sind fertig. Morgen früh geht es mit dem Flieger von Graz zurück nach Hause. Ich habe dieses Mal eine Adaption eines US-Trainings zum Thema „Big Data und Data Science mit Python“ eingespielt. Allerdings ziemlich von den Schwerpunkten umstrukturiert. Und im Januar soll eine Fortsetzung Richtung „Maschinen Lernen“ folgen.

Big Data und Data Science sind ja Schlagworte, die im Moment in Medien und Politik omnipresent sind. Auf Spiegel Online erzählt gerade eine junge Frau, was sie als Data Scientist so beruflich macht. Weil die Alten ja nichts mit den neuen Berufsbezeichnungen Data Scientist oder Data Analyst anfangen könnten. Aus guten Grund, denn im Grunde kann sich jeder mit solchen Bezeichnungen schmücken. Was nichts daran ändert, dass die Verwertung von großen Datenmengen wichtige Aufschlüsse geben kann und der Umgang mit Daten für mich als Mathematiker sowies tägliches Brot ist. Tatsächlich ist im Moment jedoch m.E. auch viel heiße Luft dabei, die in keiner Weise standardisierte Dinge reißerisch mit einem neuen Label anpreist.

Nur nannte sich das früher einfach Stochastik und/oder Stastik. Einziges Manko – es wurden bzw. werden dabei die Zahlen halt oft nicht so aufbereitet, dass sie auch Laien verstehen konnten/können. Das ist wohl die große Kunst bei dem ganzen Thema – Daten erst einmal logisch auswählen, übliche mathematischen Standardverfahren anwenden und die Ergebnisse vernünftig aufbereiten.

Der Punkt, wo das größte Know How notwendig ist, ist die Wahl der richtigen Daten, bevor man an die Verarbeitung geht. Der Rest ist Mathematik und Computertechnologie – also weigehend Standardverfahren (wenngleich nicht immer trivial).